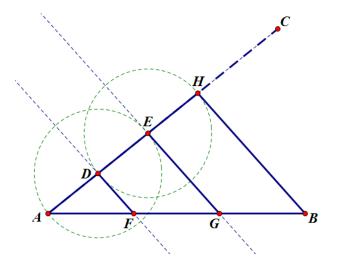
Trisect a Line Segment (6)

Method:

- 1) Construct segment AB
- 2) Construct segment AC on point A, but not-coincident with AB
- 3) Take an arbitrary point D on segment AC
- 4) Construct a circle at point D with radius AD.
- 5) Circle D intersects segment AC at E
- 6) Construct circle E with radius DE
- 7) Circle E intersects segment AC at point H
- 8) Construct segment BH
- 9) Construct segment EG that is parallel to segment BH
- 10) Construct segment DF that is parallel to segment BH
- 11) Segments DF and EG intersects segment AB at points F anf G respectively.

Claim: Points F and G trisects segment AB.


Proof:

By construction, triangles ADF, AEG, and ABH are all similar. Furthermore, $AD = \frac{1}{3}AH$ and $AE = \frac{2}{3}AH$. So $\Delta ADF = \frac{1}{3}\Delta ABH$ and $\Delta AEG = \frac{2}{3}\Delta ABH$.

Hence $AF = \frac{1}{3}AB$ and $AG = \frac{2}{3}AB$. Additionally, it implies $GB = \frac{1}{3}AB$.

$$AF + FG + GB = \frac{1}{3}AB + \frac{1}{3}AB + \frac{1}{3}AB = AB$$

Hence points F and G trisect segment AB.

